Towards a Climate-Neutral Germany

Three Steps for Achieving Climate Neutrality by 2050 and an Intermediate Target of -65% in 2030 as Part of the EU Green Deal

EXECUTIVE SUMMARY
EXECUTIVE SUMMARY
Towards a Climate-Neutral Germany: Three Steps for Achieving Climate Neutrality by 2050 and an Intermediate Target of -65% in 2030 as Part of the EU Green Deal

ON BEHALF OF
Agora Energiewende
www.agora-energiewende.de
info@agora-energiewende.de

Agora Verkehrswende
www.agora-verkehrswende.de
info@agora-verkehrswende.de

Stiftung Klimaneutralität
www.stiftung-klima.de
info@stiftung-klima.de

WRITTEN BY
Prognos AG
Goethestr. 85 | 10623 Berlin
Hans Dambeck, Florian Ess, Hanno Falkenberg, Dr. Andreas Kemmler, Dr. Almut Kirchner, Sven Kreidelmeyer, Sebastian Lübbers, Dr. Alexander Piégsa, Sina Scheffer, Dr. Thorsten Spillmann, Nils Thamling, Aurel Wünsch, Marco Wünsch, Inka Ziegenhagen

Öko-Institut e. V.
Borkumstraße 2 | 13189 Berlin
Dr. Wiebke Zimmer, Ruth Blanck, Hannes Böttcher, Wolf Kristian Görz, Klaus Hennenberg, Dr. Felix Chr. Matthes, Margarethe Scheffler, Kirsten Wiegmann

Wuppertal Institut für Klima, Umwelt, Energie gGmbH
Döppersberg 19 | 42103 Wuppertal
Clemens Schneider, Dr. Georg Holtz, Mathieu Saurat, Annika Tönjes, Prof. Dr. Stefan Lechtenböhmer

In addition to overseeing the building and energy sectors in this study, Prognos was entrusted with overall project management and scenario design. Öko-Institut was responsible for transport, agriculture, waste and LULUCF (land use, land use change and forestry), as well as the derivation of emission reduction targets. The Wuppertal Institute was responsible for examining the industrial sector.

Translation: WordSolid
Typesetting: Urs Karcher/UKEX,
Juliane Franz, Marica Gehlfuss/Agora Verkehrswende
Cover image: PPAMPicture/iStock

PROJECT MANAGEMENT
Alexandra Langenheld
alexandra.langenheld@agora-energiewende.de

Dr. Matthias Deutsch
matthias.deutsch@agora-energiewende.de

Marco Wünsch | marco.wuensch@prognos.com

Inka Ziegenhagen | inka.ziegenhagen@prognos.com

TECHNICAL STEERING COMMITTEE
Agora Energiewende
Dr. Patrick Graichen, Dr. Matthias Deutsch,
Alexandra Langenheld, Frank Peter, Philipp D. Hauser,
Fabian Hein, Mara Marthe Kleiner, Thorsten Lenck,
Christoph Podewils, Georg Thomaßen, Wido K. Wilecka

Agora Verkehrswende
Dr. Carl-Friedrich Elmer, Christian Hochfeld,
Dr. Günter Hörmanninger, Dr. Urs Maier

Stiftung Klimaneutralität
Rainer Baake, Dr. Julia Metz, Martin Weißen

ACKNOWLEDGEMENTS
This study would not have been possible without the commitment of numerous colleagues. We would like to thank the following people in particular: Claudia Beckmeyer, Nikola Bock, Matthias Buck, Juliane Franz, Marica Gehlfuss, Janne Görlich, Andreas Graf, Manuela Henderkes, Shirin Langer, Steffi Niemzok, Dr. Philipp Prein, Ada Rühring, Fritz Vorholz.

Prognos, Öko-Institut, and Wuppertal Institute have responsibility for sections 1 to 5, while Agora Energiewende, Agora Verkehrswende, and Stiftung Klimaneutralität are responsible for the preface and introduction.

This publication is available for download under this QR code.

Please cite as:
Prognos, Öko-Institut, Wuppertal-Institut (2020): Towards a Climate-Neutral Germany. Executive Summary conducted for Agora Energiewende, Agora Verkehrswende and Stiftung Klimaneutralität.

www.agora-energiewende.de
Preface

Dear readers,

The third year of drought in Germany, devastating forest fires in Australia and California, record temperatures at the North and South Poles – scientists’ dire climate warnings have become impossible to ignore. Fortunately, despite the COVID-19 pandemic, a number of countries have made major climate policy strides. The European Union, Great Britain, Japan, South Korea and many US federal states have all committed themselves to achieving climate neutrality by no later than 2050. Notably, China has also announced its own ambitious plans, recently pledging to make its economy climate neutral by 2060.

The climate policy developments in the past year point to the emergence of a new consensus. But achieving climate neutrality by mid-century will require more ambitious interim goals for 2030 than currently exist. The EU Commission has proposed that Europe increase its 2030 emissions reduction target from 40% to at least 55% relative to 1990 levels. Denmark plans to reduce its emissions by as much as 70%.

How can Germany build a society that does not rely on coal, oil and natural gas? And what will it need to do specifically over the next ten years? We commissioned Prognos, the Öko-Önstitut and the Wuppertal Institute to develop a feasible scenario for a climate-neutral Germany with economic efficiency, adherence to existing investment cycles and public acceptance in mind.

The resulting scenario shows that Germany can achieve climate neutrality by 2050 and reduce its emissions by 65% by 2030 as long as it greatly accelerates its pace of climate action. This report describes the concrete steps that Germany will have to take over the next 30 years in order to achieve these goals. We hope that the outlined proposals provide orientation in the ongoing debate, and serve as an impetus for new ideas as well.

Yours sincerely,

Dr. Patrick Graichen, Director Agora Energiewende
Christian Hochfeld, Director Agora Verkehrswende
Rainer Baake, Director Stiftung Klimaneutralität

Findings at a glance:

1. Germany can achieve climate neutrality by 2050 in three steps while adhering to existing investment cycles. The first step consists of a 65% reduction in emissions by 2030. The second step is the complete transition to climate-neutral technologies, for a total emissions reduction of 95%. The third step is the offsetting of residual emissions through carbon capture and storage.

2. The path to climate neutrality involves a comprehensive investment programme comparable in scope to the German economic miracle of the 1950s and 60s. The core elements of the programme are the creation of a renewable-based energy sector, mass electrification, a smart and efficient modernization of buildings and the development of a hydrogen economy for the industrial sector. Besides achieving climate neutrality, the programme will also improve people’s quality of life by reducing noise and air pollution.

3. An enhanced German reduction target of 65% for 2030, in line with the requirements of the European Green Deal, will require significantly accelerating the green transition in the energy, transport and heating sectors. This includes the complete phase-out of coal by 2030, a 70% share of renewables in electricity generation, 14 million electric cars on the road, 6 million heat pumps, an increase in the green retrofit rate of at least 50% and the use of some 60 TWh of clean hydrogen.

4. The next legislative period will determine how Germany goes about achieving climate neutrality by 2050 and a 65% reduction in GHG emissions by 2030. Government action after the 2021 federal election will be pivotal for future climate policy. Intelligent policy instruments will be needed to modernise Germany’s economy and make it sustainable and resilient. They will also be needed to ensure that the structural changes are as fair and inclusive as possible.
Content

Introduction 7

The path to climate neutrality by 2050, in three steps 7

An investment and modernisation programme for Germany 8

The interim target: a -65% reduction of greenhouse gas emissions by 2030 10

Now it’s up to government leaders 11

1 Summary 13

Germany One-Third of the Way to Climate Neutrality 14

The Climate Action Plan and the Climate Protection Act 15

Three steps to climate neutrality: Step 1 – Reduce emissions by 65% by 2030 16

Three steps to climate neutrality: Step 2 – Reduce emissions by 95% 18

Three steps to climate neutrality: Step 3 – Offset residual emissions with CCS and negative emissions 19

Three pillars of the transition to climate neutrality:
Pillar 1 – Energy efficiency and the reduction of energy demand 21

Three pillars of the transition to climate neutrality:
Pillar 2 – Renewable electricity generation and electrification 22

Three pillars of the transition to climate neutrality:
Pillar 3 – Hydrogen as an energy source and raw material 26

The Climate Neutral 2050 scenario at a glance 27
EXECUTIVE SUMMARY | Towards a Climate-Neutral Germany

Introduction

2020 will go down in history as the year of the COVID-19 pandemic. Every country of the world has experienced an unprecedented struggle to save human lives along with massive restrictions on economic and social life. The pandemic has represented a particularly daunting challenge for policy-makers, who have had to make far-reaching decisions under enormous time pressure. But they have also shown all that can be achieved in response to a severe crisis.

It is quite possible that 2020 will also be remembered for another reason: the year that global CO₂ emissions began to decline. Many countries have begun one version or another of a green recovery strategy and have made economic aid for industries contingent on the prospect of climate neutrality. As a result of these activities, the 33 Gt of CO₂ released in 2019 may come to represent the highwater mark of annual global carbon emissions.

Whether it does or not, we are now locked in a race to achieve climate neutrality. The average temperature has already risen 1.1 degrees above pre-industrial levels. In order to keep the average temperature “well below 2 degrees,” as required by the Paris Agreement, global greenhouse gas emissions must decrease significantly, and soon. At the same time, countries are already jockeying to be among the leading producers of key climate-neutral technologies, as recent policy announcements by China and California – the former aiming for carbon neutrality by 2060, the latter banning new internal combustion vehicles starting in 2035 – show.

In Europe, a climate policy sea-change is in the offing. Under the European Green Deal, the EU has committed itself to climate neutrality by 2050 and is currently debating increases in interim targets for 2030. In summer 2021, the EU plans to roll out an ambitious climate action programme.

This study spells out what EU’s policies will mean for Germany – in terms of both achieving climate neutrality in 2050 and meeting its increased targets for 2030.

The path to climate neutrality by 2050, in three steps

Germany can achieve climate neutrality by 2050 in three steps while adhering to existing investment cycles. The first step is a 65% reduction of emissions relative to 1990 levels by 2030. The second step is a complete switch to climate-neutral technologies, leading to a 95% cut in emissions. The third step is the balancing of residual emissions through carbon capture and storage.

This study presents a path to climate neutrality optimised for cost and feasibility. The main criteria for the selection of measures were economic efficiency and adherence to existing investment cycles. The three steps build on previous reduction measures and policies.

Step one takes proven, cost-effective strategies and accelerates them to achieve a 65% reduction of greenhouse gas emissions by 2030 relative to 1990 levels. Three types of action are needed to meet this goal. The first is the rapid decarbonisation of the electricity sector by phasing out coal and expanding renewable energy generation. The low-carbon electricity will power climate efforts in the other economic sectors. The second is taking advantage of planned industrial refurbishments during the 2020–2030 period to introduce climate-neutral technologies and avoid stranded assets in the 2030s and 40s. And the third is the accelerated reduction of GHG emissions in Germany.
Step two on the way to climate neutrality by 2050 is the reduction of emissions by 95% relative to 1990 levels. To achieve this, Germany will have to eliminate coal, oil and natural gas in the energy, transport, buildings and industrial sectors. For this phase, it is crucial that Germany reduce the market share of traditional technologies (internal combustion vehicles, fossil-fuel heating systems, natural gas-based chemical plants) over the next decade and abandon the current business model for these technologies after 2030. Preparing for this transition will be one of the central tasks in the 2020s for policymakers as well as for businesses.

Step three involves the neutralisation of residual emissions through carbon capture and storage (CCS). Most of the remaining emissions will arise in the agricultural sector due to animal husbandry. (Because the study’s scenarios do not presuppose drastic changes in eating habits – only modifications that reflect current trends – they take into account the continued existence of the meat industry.) Residual emissions are also expected in the cement industry despite the introduction of green technologies. The remaining emission total – 60 million tonnes of CO₂eq – are offset by the capture of CO₂ from biomass plants and the air. The captured CO₂ could then be stored in, say, empty gas fields or deep geological formations under the North Sea.

An open and honest discussion of the final step towards climate neutrality should take place sometime over the next few years. For one, policymakers need to devise a comprehensive strategy for biomass that harmonises agriculture, nature conservation and climate neutrality. For another, they need to formulate a CCS strategy to prepare CO₂ transport routes in Germany and identify possible carbon storage sites.

An investment and modernisation programme for Germany

The path to climate neutrality consists of a comprehensive investment programme comparable in scope to the German economic miracle of the 1950s and 60s. The core elements of the programme are a digital energy economy based on renewable energies, an extensive electrification of transport and heat generation, a smart and efficient modernisation of buildings and the development of a hydrogen economy for the industrial sector. Besides reducing emissions, these measures will increase the quality of life by lowering noise and air pollution.

The path towards climate neutrality presented in this study does not explicitly rely on reduced consumption or a zero-growth strategy. Instead, it assumes an average economic growth of 1.3% per year through 2050. The basic idea of the study is to make Germany climate neutral through public and private investments. It describes a path that catches up on the investment backlog of recent years, modernising Germany’s energy sector, transport system, buildings and industrial plants.

The study did not develop a “business-as-usual” scenario to quantify the additional investment needed for climate neutrality. Given the global urgency of climate action, “business as usual” is no longer a viable option. Besides, “Climate Paths for Germany”, a 2018 study commissioned by the Federation of German Industries (BDI) and performed by Boston Consulting and Prognos, has already done the work: to cut 95% of emissions by mid-century, Germany will have to invest 70 billion euros per year from now through 2050. This projection may be on the high side – its assumptions regarding technological progress are conservative – but, even so, it corresponds to only 10% of Germany’s current gross investment level. Thanks to today’s low interest rates, meeting this level of investment is entirely within reach.
Towards a Climate-Neutral Germany

Policy measures in the Climate Neutral 2050 scenario (CN2050) (GHG emissions in Mt CO₂eq)

Energy sector
- Coal phase-out in 2030, 70% renewable electricity generation, decarbonised district heating, deployment of H₂

Transport
- 14 million electric cars, 30% of road freight kilometres electric, more public transport, walking, cycling and rail

Buildings
- Green retrofit rate 1.6% per year, 6 million heat pumps, faster expansion of district heating

Agriculture
- Reduction of fertiliser use, reduction of livestock, fermentation of manure

Waste
- 90% of living spaces in 2050 have received a green retrofit or have been newly built with efficiency in mind, complete shift to climate neutral heat production

Industry
- Introduction of DRI, coal phase-out, deployment of H₂ for steam

Energy sector
- H₂ and biomass for high-temperature heat, H₂ for steel, chemical recycling, CCS for process emissions

Transport
- Electrification of passenger transport, CO₂-free freight transport, further expansion of public transport

Buildings
- 90% of living spaces in 2050 have received a green retrofit or have been newly built with efficiency in mind, complete shift to climate neutral heat production

Agriculture
- Reduction of fertilisers, reduction of livestock, fermentation of manure

Negative Emissions
- BECCS, DACCS and green polymers offset residual emissions

H₂ = hydrogen
* Includes electricity generation from renewable hydrogen, and from stored and imported renewable electricity.
Prognos, Öko-Institut, Wuppertal Institut (2020)
A large portion of the investment must go to building an electricity system based entirely on renewables and capable of producing at least 50% more electricity in 2050 than today. In the transport and heating sectors, the leading technologies will be electric vehicles and heat pumps on account of their high efficiency advantages. Other technologies include green retrofits for buildings and the development of a hydrogen economy for industry, energy, shipping and air traffic.

With the right investments, the Germany of 2050 will have a modern electricity and transport infrastructure, a sustainable hydrogen industry, energy efficient buildings and an industry at the forefront of global competition in future technologies. In the coming years, an important task of policymakers will be to initiate these investments and ensure that Germany benefits from the resulting economies of scale.

In addition to reducing emissions, the modernisation of the German economy will also improve quality of life. The electrification of the transport sector will lead to a significant reduction in air and noise pollution, while smart mobility services will decrease the number of parking spaces, freeing up areas for parks and leisure activities in dense urban zones. Residential buildings retrofitted for heat pumps or heating networks will be cosy in winter and cool in summer. As cities become warmer as a result of climate change, the "side effects" of efficient climate neutrality strategy will make life better for everyone.

The interim target: a 65% reduction of greenhouse gas emissions by 2030

The European Green Deal will require Germany to increase its 2030 reduction target to 65%. Hitting this target will mean a significant acceleration of the green transition in its energy, transport and heating sectors. This includes the complete phase-out of coal by 2030, a 70% share of renewables in electricity generation, 14 million electric cars on the road, 6 million installed heat pumps, an increase in the green retrofit rate of at least 50% and the use of some 60 TWh of clean hydrogen.

As part of the European Green Deal, the EU reduction target for 2030 is expected to increase from 40% to 55% relative to 1990 levels. In turn, Germany will have to increase its national target from 55% to 65%.

According to our study, the additional reductions for 2030 will mostly come from the energy sector. Germany’s energy sector will have to cut 77 million additional tons of CO₂ beyond the current 2030 sector target defined by the Climate Protection Act. To do this, Germany would have to move up the date of the coal phase-out from 2038 to 2030 and increase the share of renewable energy in electricity consumption to around 70%. (This is even more of an achievement than it first appears: due to the integration of energy sectors, electricity demand in 2030 will be higher than it is today.) The coal phase-out is likely to be largely market-driven. The EU Commission will tighten emissions trading in order to meet elevated climate targets, and lignite-fired power plants will become uneconomical after CO₂ prices reach around 50 euros per tonne.

In addition to the accelerated clean-energy transition, the creation of a hydrogen economy for the industrial sector can save a further 17 million additional tons of CO₂ beyond the current sector target. Half the plants in Germany’s basic materials industry will need refurbishment over the next 10 years, so climate protection and new investment will have to go hand in hand. The steel industry in particular could be a pioneer in this regard. Its old blast furnaces could be replaced by direct reduction systems fuelled mainly by hydrogen. Of course, that would require a policy that strategically promotes the development of a hydrogen economy.

The path to a 65% reduction of emissions also includes a faster transition to sustainable transport and heating. The additional reductions – 5 million tonnes per sector – are modest, but necessary.
The era of half-hearted climate action is over. After bold policy announcements from Brussels, China and California, it is time for Berlin to follow suit. The cross-party support for the European Green Deal must spark ambitious national action in Germany. In the first half of the 2020s, German leaders need to adopt a package of short-term measures for the next decade while creating a framework for achieving climate neutrality by 2050 at the latest.

A key part of that framework is ensuring reliable conditions for investment. To achieve this, Germany must pass policies that resolutely work to keep global warming well below 2 degrees above pre-industrial levels. For clearly, half measures will need correcting under the strain of worsening climatic conditions. The same applies to companies: it is no longer enough to manufacture products in compliance with current regulations. Any business model not geared to the Paris Agreement and to climate neutrality by 2050 will be unsustainable in the medium and long term. And companies that fail to get ahead of the curve will not be major players on the global markets of the future.

The clean-energy transition will require forward-looking policies and clear regulations. Investors in climate-neutral industrial plants and processes need to know that climate-neutral products will be competitive domestically and abroad. It is imperative that Germany either avoid or offset any competitive disadvantages that result from climate-neutral policies and the accelerated clean-energy transition in the run-up to 2030.

The scenario assumes that electric cars and plug-in hybrids will quickly gain a large share of the market, accounting for 80% of new car sales in Germany by 2030, with the total electric fleet size reaching 14 million vehicles. This development is consistent with the recent announcement by the European Commission to further tighten the CO₂ limits for passenger vehicles, assisted by other policies at the national level. Preparation for a drastic increase in the sale of electric vehicles will safeguard the German automotive industry amid the clear shift to electrification signalled by California and China, each with their own massive market.

Finally, the transition to sustainable heating requires the establishment of an efficiency industry, the green retrofitting of existing buildings and the production of heat pumps on an industrial scale. The cost savings and scaling potential from automated production systems are far from exhausted in these areas.

In order to accelerate the green transition in the energy, industrial, transport and heating sectors, Germany will need a mix of instruments that intelligently combines market-based incentives, targeted support mechanisms and regulatory policies. To be certain, this will also require comprehensive reforms on energy taxes, levies and duties, because existing price structures tend to promote oil and natural gas and impede the use of renewable electricity.

Now it’s up to government leaders

The next legislative period will determine how Germany goes about achieving climate neutrality by 2050 and a 65% reduction in GHG emissions by 2030. Government action after the 2021 federal election will be pivotal for future climate policy. Intelligent policy instruments will be needed to modernise Germany’s economy and make it sustainable and resilient. They will also be needed to ensure that the structural changes are as fair and inclusive as possible.

At the same time, German policymakers must ensure that the structural changes are fair. Many studies have shown that the path to climate neutrality creates economic growth and jobs – but that the fruits are not evenly distributed across industries and regions. Policymakers and business leaders must neither turn a blind eye to the effects of structural changes nor attempt to impede them. Rather, they must actively
face economic changes and establish new business models and opportunities in affected regions.

The challenge of creating a climate-neutral Germany and a climate-neutral Europe by 2050 is enormous, but surmountable – provided that politicians do not drag their feet for another legislative period. The task of the German government after the 2021 elections will be to formulate the central policies and instruments needed to achieve climate neutrality. These will lay the groundwork not only for the mitigation of climate change but also for the creation of a stable economy and an improved quality of life for everyone.
1 Summary

This study describes paths that Germany can take to achieve climate neutrality by 2050. Climate neutrality refers to the complete or near-complete elimination of greenhouse gas (GHG) emissions across all sectors of the economy and the offsetting of remaining emissions through negative emission technologies. Some sectors – agriculture and certain industrial processes, in particular – will not be able to eliminate all emissions by 2050. If Germany is to become climate neutral, these remaining emissions will have to be balanced by removing CO₂ from the atmosphere through carbon capture and storage (CCS) technologies.

The study presents a strategy for achieving climate neutrality in Germany by 2050 that is optimized with regard to cost and feasibility. The Climate Neutral 2050 (CN2050) scenario describes a decarbonization path with a 65% reduction milestone in 2030. The study also considers a variant decarbonization path with a 60% reduction of GHG emissions in 2030.

The study takes into account not only energy-related emissions but also GHG emissions from all sectors. It examines the oft neglected areas of agriculture, waste and land use in detail, along with methane and nitrous oxide emissions from biomass and other smaller sources of emissions. The study indicates the absorption of carbon by forests and soils but it does not count their effect towards emission reductions. The data and forecasts on natural carbon sinks are still imprecise, and, currently, the likelihood that climate change will render forests and soils into CO₂ sources over the coming decades is greater than the likelihood that they will remain sinks. The study’s accounting of GHGs is identical to the approach used in the national inventory reports of the United Nations Framework Convention on Climate Change (UNFCCC).

The study’s scenarios for achieving climate neutrality assume a variety of measures in the economic sectors. The main selection criterion for the measures was economic efficiency. That is to say, measures with lower CO₂ abatement costs were generally preferred to more expensive measures. The other criterion was feasibility, because rapid transformation and market ramp-up is required in many areas.

In order to obtain robust scenarios, we focused on technologies possessing the lowest possible technological and economic risks. Accordingly, we kept CCS use to a minimum and selected alternative technologies wherever possible.

Our study explicitly does not rely on reduced consumption as a necessary prerequisite for achieving climate neutrality. We assume that the living space per capita continues to rise and that mobility levels stay the same. In the area of nutrition, we have adjusted our parameters to reflect social trends such as the moderate decrease in milk consumption and the shift from eating meat towards eating more poultry and organic food. We assume that Germany maintains its high level of industrial production. Finally, we assume average annual GDP growth of 1.3%. We do not explicitly examine the economic effects of anticipated climate protection measures. However, past studies (such as BDI 2018) have shown that with international cooperation, ambitious climate protection can be implemented without macroeconomic losses.

In sum, the path we examine represents a realistic, ambitious scenario for how Germany can become climate neutral while increasing its prosperity and securing its appeal as a place to do business. All needed investments are designated for normal modernization cycles.
Germany One-Third of the Way to Climate Neutrality

Energy policies to reduce energy consumption – whether because of supply security, air pollution, resource scarcity, or geopolitical dependence – have been around for a very long time. Climate considerations are a more recent development. After the UN Framework Convention on Climate Change was adopted at the environmental summit in Rio de Janeiro in 1992, the first UN World Climate Conference (COP-1) took place three years later in Berlin. The result was the Berlin Mandate, which formed the basis for the binding emissions reduction targets set by the 1997 Kyoto Protocol. EU-15 countries committed themselves to an 8% reduction in greenhouse gas emissions by 2012 relative to 1990 levels. As part of EU burden-sharing, Germany signed its first international agreement for reducing greenhouse gas emissions.

By 2018, Germany had reduced its greenhouse gas emissions by around 31% relative to 1990 levels. (Preliminary data indicate that it decreased emissions by another four percentage points in 2019.) This means that Germany is around one-third of the way to achieving climate neutrality.

Most of the emissions reductions since German reunification have occurred in the energy sector. The modernization of electricity and heat supply in the former East German states, which had been predominantly based on lignite, played an important role, particularly in the 1990s. With the turn of the millennium and the introduction of the German Renewable Energy Sources Act (EEG), the expansion of renewables for electricity generation became the main driver of emissions reductions. The share of renewables in electricity consumption increased from just 6.5% in 2000 to 37.8% by 2018 (and to 42.1% in 2019). Electricity generation is the area in which

The reduction of greenhouse gas emissions from 1990 until today (in Mt CO₂eq) Figure 1

<table>
<thead>
<tr>
<th>Year</th>
<th>Buildings</th>
<th>Energy sector</th>
<th>Industry</th>
<th>Waste</th>
<th>Agriculture</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1,251</td>
<td>-161</td>
<td>-93</td>
<td>-89</td>
<td>-29</td>
<td>-2</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>858</td>
</tr>
</tbody>
</table>

UBA (2020)
increasing share of biofuels, the transport sector would have seen a significant increase in GHG emissions. Since 1990, emissions in the agricultural sector have declined, particularly in the 1990s, on account of reductions in the number of dairy cows and beef cattle. Their number has fallen again somewhat because of low milk prices and the scarcity of green fodder due to drought. Nitrogen discharge and nitrous oxide emissions from agricultural soils have been at a high level since the 1990s. At the same time, agricultural yields have increased, improving nitrogen efficiency. Stricter fertilizer regulations and the drought of the past two years have reduced fertilizer use, which has led to a decrease in emissions from agricultural soils.

In the waste sector, emissions fell by 75% between 1990 and 2018. This is mainly attributable to the decrease in methane emissions from landfills due to a reduction in the amount of deposited organic waste in the wake of a 2005 ban. A large portion of waste is now incinerated, where it is recycled in the form of heat and electricity so that it shows up in the energy sector balance. The area of wastewater treatment has also seen emissions reductions. This was on account of a new law requiring buildings to be connected to the public sewer system and improved wastewater and sewage sludge treatment.

The Climate Action Plan and the Climate Protection Act

In November 2016, the German federal government passed the Climate Action Plan 2050. Three years later, it legally enshrined the plan in its Climate Protection Act, which requires that Germany cut its GHG emissions by at least 55% relative to 1990 levels by 2030 and become GHG-neutral by 2050. The Climate Action Plan also specifies 2030 climate targets for individual sectors. The Climate Action Programme 2030, passed in fall 2019, lays the groundwork for legislation to achieve the climate targets, such as the Coal Exit Act and the Fuel Emis-
Additional reduction potentials relative to previous targets vary across sectors, and some are harder to realize than others. According to the calculations in this study, further reductions in the agriculture and waste sectors are very unlikely, while in the transport and building sectors, additional cuts of 5 Mt each are possible. The greatest potential reductions are in the industry and energy sectors, at 17 Mt and 77 Mt, respectively.

The energy sector has the potential to cut emissions by 207 Mt CO₂eq by 2030, or 77 Mt CO₂eq more than the sector target established in the Climate Protection Act. The primary means for achieving the additional reductions is an accelerated phase-out of coal (2030 instead of 2038) and the increased expansion of renewable capacity in electricity generation. The use of hydrogen for fueling power stations and CHP plants starting in the late 2020s will also contribute to the decline. A phase-out of coal by 2030 will likely occur in the context of tightened EU reduction targets.

Three steps to climate neutrality:
Step 1 – Reduce emissions by 65% by 2030

An important step to climate neutrality by 2050 is a 65% reduction of emissions by 2030. Actions taken in the 2020s will decide whether climate neutrality can be achieved by the middle of the century. In the event that the EU raises its reduction target for 2030 from 40 to 55%, Germany will have to reduce its own emissions by about 65% by 2030.

The 2019 Climate Protection Act provides a solid foundation for a further reduction in emissions. The additional reduction potentials relative to previous targets vary across sectors, and some are harder to realize than others. According to the calculations in this study, further reductions in the agriculture and waste sectors are very unlikely, while in the transport and building sectors, additional cuts of 5 Mt each are possible. The greatest potential reductions are in the industry and energy sectors, at 17 Mt and 77 Mt, respectively.
direct reduction systems fuelled mainly by hydrogen and smaller proportions of natural gas.

Investment in new technologies based on electricity or (mainly) renewably produced hydrogen is required in other sectors as well. The creation of an accompanying infrastructure is needed not only for industrial hydrogen supply but also for CCS in the cement and lime industries. Moreover, it is important that German industry invest quickly in more recycling and in increased quantities of secondary raw materials so that these solutions can exploit their full potential after 2030. The first CCS systems in the cement industry could be operational as early as 2030.

In the building sector, the additional reductions can be achieved through changes in heating systems, an expansion of heating networks and around a 50% increase in the green retrofit rate. Among new heating installations, heat pumps will gain a large market share by the mid-2020s, particularly for

(from 40 to 55%) and adjustments to the EU ETS, largely due to the changing market conditions for coal-fired power generation.

Growing electrification in all sectors will increase electricity consumption by 51 TWh, or 9%, relative to 2018. In 2030, renewable energy will make up around 70% of gross electricity consumption. This will require increasing capacities in offshore wind to 25 GW, in onshore wind to 80 GW and in PV to 150 GW.

Meeting climate targets in the industrial sectors will require the introduction of new processes in the basic materials industry. Over the next 10 years, around 50% of the central plants in the German basic materials industry are scheduled for modernisation. This gives Germany a good opportunity to introduce new technologies without stranding assets. The steel industry in particular could be a pioneer in this regard. Its old blast furnaces could be replaced by

Three steps to climate neutrality: Step 1 – Reduce emissions by 65% by 2030 (GHG emissions in Mt CO$_2$eq)

<table>
<thead>
<tr>
<th>Energy sector</th>
<th>Industry</th>
<th>Transport</th>
<th>Buildings</th>
<th>Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase out coal by 2030, with around 70% of electricity generation from renewables, decarbonise district heating, use H₂</td>
<td>Introduce DRI, eliminate coal, use H₂ for steam</td>
<td>14 million electric cars, 30% of road freight kilometres electric, more public transport, cycling, walking and rail</td>
<td>Make green retrofit rate 1.6% per year, 6 million heat pumps, greater expansion of district heating</td>
<td>Reduce manure, reduce livestock, ferment agricultural waste</td>
</tr>
</tbody>
</table>

H₂ = hydrogen
Prognos, Öko-Institut, Wuppertal Institut (2020)
single- and two-family homes, leading to a total of 6 million heat pumps by 2030. Green district heating will gain increasing importance in urban areas. After 2025, new heating systems fuelled by heating oil or natural gas may only be used in exceptional cases.

In the transport sector, there is a change in current trends. People stay as mobile as before, but they use public transport, cycle or walk significantly more. In 2030 there will be 14 million electric cars (including plug-in hybrids) on the road. Rail will be used to transport a larger volume of goods, while one-third of road-freight kilometres will be covered by electric trucks powered by batteries, overhead lines and fuel cells.

By 2030, the agricultural sector will have implemented available mitigation measures such as the fermentation and improved storage of farm manure and the use of low-emission muck spreaders. Additional reductions will be achieved through changes in agricultural production, including the expansion of organic farming, the switch to crops with lower nitrogen requirements and the reduction of livestock. The changes in production reflect changes in demand as people consume fewer animal products and the sector shifts from gaseous to solid biofuels.

In the waste sector, methane emissions from landfills will continue to decrease through 2030. The reduction of methane emissions will be accelerated by expanding landfill ventilation measures. Other areas in the sector have little potential for reductions by 2030.

Three steps to climate neutrality:
Step 2 – Reduce emissions by 95%

By 2030, two-thirds of the GHG reductions needed to achieve climate neutrality will be achieved. The last third will be eliminated or offset by 2050.
Electrification will continue across all sectors in the remaining two decades before 2050, and hydrogen will become increasingly important as a secondary energy carrier and raw material. Efficiency improvements are also needed to help reduce emissions in all economic sectors. Biomass will play an increasingly important role. Cultivation will shift towards solid biomass and its use will be concentrated on areas in which no good alternatives are available and that are suitable for CCS (especially in the chemical and steel industries).

Overall, the volume of passenger transport will remain roughly the same as today. Shared vehicle use via carpooling and public transport will increase capacity and reduce total vehicle-kilometres. The remaining road passenger transport will be provided almost entirely by battery-electric vehicles. Trucks powered by batteries, overhead lines and fuel cells will put road freight transport on the path to climate neutrality. At the same time, more and more goods will be transported by rail. Air transport and shipping will be powered entirely by electricity-based synthetic fuels.

Electrification will continue across all sectors in the remaining two decades before 2050, and hydrogen will become increasingly important as a secondary energy carrier and raw material. Efficiency improvements are also needed to help reduce emissions in all economic sectors. Biomass will play an increasingly important role. Cultivation will shift towards solid biomass and its use will be concentrated on areas in which no good alternatives are available and that are suitable for CCS (especially in the chemical and steel industries).

Overall, the volume of passenger transport will remain roughly the same as today. Shared vehicle use via carpooling and public transport will increase capacity and reduce total vehicle-kilometres. The remaining road passenger transport will be provided almost entirely by battery-electric vehicles. Trucks powered by batteries, overhead lines and fuel cells will put road freight transport on the path to climate neutrality. At the same time, more and more goods will be transported by rail. Air transport and shipping will be powered entirely by electricity-based synthetic fuels.

Three steps to climate neutrality:

Three steps to climate neutrality: Step 3 – Offset residual emissions with CCS and negative emissions

Residual GHG emissions are the emissions that cannot be eliminated by mitigation measures. In the agricultural sector, these arise through biological processes in soils (fertilizers) and in animal husbandry. Residual emissions will also exist in industrial processes and waste management.

By contrast, energy-related GHG emissions can be almost completely eliminated by using renewable energy sources. Only very small amounts of methane...
Direct Air Carbon Capture and Storage (DACCS) is the capture of CO₂ directly from the air and its subsequent storage in suitable geological formations. The ambient air is sucked in by fans and bound by a sorbent. The energy consumption and the costs of DACCS are significantly higher than for BECCS.

Green naphtha / absorption of CO₂ to green polymers: Biomass or CO₂ absorbed from the air via direct air capture can be used in combination with renewables-based hydrogen in Fischer-Tropsch plants to create green naphtha and other bio-based hydrocarbons. These can then be processed into polymers and plastics. With an improved recycling system, the plastics can be permanently kept in the material cycle. Coupled with CCS for waste incineration, this technology can prevent the re-emission of captured carbon.

Industry will play an important role in the deployment of BECCS. The high concentrated heat requirements of the steel and chemical industries are particularly well suited for the large-scale use of biomass and for the capture of the resulting CO₂.
Between 2018 and 2030, energy consumption drops by 16%, from around 9,000 PJ to around 7,500 PJ. By 2050, final energy consumption will have to fall to 5,800 PJ, a decrease of around 35% relative to 2018. The main drivers for the decline will be building retrofits, more efficient lighting, low-energy electric devices and more efficient transport through electrification. The increasing use of heat pumps to generate space heating and hot water will reduce fuel consumption through the use of environmental heat.

Energy conversion will also see significant primary energy reductions in the period up to 2050, especially in the area of electricity generation. While in 2018 almost three-quarters of electricity was generated from thermal power plants, which have high conversion losses, fuel-based electricity generation will decrease to around 7% by 2050. Most electricity will be generated from wind energy and photovoltaics, which have no conversion losses.

In addition to changes in the total amount of primary energy consumed, the types of energy used will also see significant changes by 2050. The consumption of coal, natural gas and oil will fall to zero by 2050. Nuclear energy will already be phased out by 2022.

The share of renewables in primary energy consumption will increase from 14% in 2018, to 38% by 2030 and to 81% by 2050. Imports of synthetically produced energy sources will account for around 16% of primary energy in 2050. The remaining 3% of primary energy in 2050 will come from other energy sources such as waste and small amounts of imported electricity.

Three pillars of the transition to climate neutrality:

Pillar 1 – Energy efficiency and the reduction of energy demand

In the study’s Climate Neutrality 2050 scenario, primary energy consumption, i.e. all energy sources used in Germany directly or for conversion to secondary energy sources, falls by 50%, from around 13,000 PJ today to around 6,600 PJ, by 2050.

Two changes will spearhead the reductions: lower losses from energy conversion and a decrease in final energy consumption.
TWh from industry. Electricity consumption in the building sector will decline slightly. Efficiency improvements in electrical appliances and lighting and the replacement of backup heaters and electric boilers will save more than added heat pumps will consume.

To make electricity generation completely climate neutral, the installed capacities of renewables will increase to 130 GW for onshore wind, to 70 GW for offshore wind and to 355 GW for solar.

In 2050, the electricity system will be based entirely on renewables. Including hydropower and biomass, renewables will directly cover 88% of electricity consumption. A mere 7% will be supplied by gas-fired power plants powered by renewable hydrogen. The remaining 5% will be covered by stored or imported hydrogen.

Three pillars of the transition to climate neutrality:

Pillar 2 – Renewable electricity generation and electrification

The importance of electricity will continue to grow as Germany works towards climate neutrality. Electricity is a very efficient energy source for many applications, particularly in the transport and heating sectors, where it delivers significant advantages compared with combustion engines and boilers.

Electrification and the production of renewable hydrogen will be the main reasons why electricity consumption will have increased to around 960 TWh by 2050, or 370 TWh higher than that of today. Of that, about 160 TWh will come from the transport sector, 130 TWh from hydrogen production and 70
electricity. To achieve these targets, the electricity system will have to become significantly more flexible – through more battery storage, through the deployment of heat pumps, through electrolysers and electric cars and through more electricity trading with other countries. The spatial and temporal distribution of generation will balance variable generation and enable the efficient use of renewable electricity.

The short-term balancing of electricity demand and supply will take place primarily through battery storage, load management and electricity trading. Balancing seasonal variations in electricity supply will be primarily achieved through the generation and reconversion of hydrogen as well as through the use of large storage power stations in Scandinavia and the Alps. Electricity exports to these countries will protect storage levels – especially in summer and autumn – so that compared with today more electricity will be available in winter.

Figure 7

Gross electricity consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>H₂/CO₂</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production 19 TWh H₂</td>
<td>6 million heat pumps, efficient electric appliances, efficient lighting, decline of direct electric heaters</td>
<td>14 million heat pumps, increasing for cooling and ventilation, efficiency with heat pumps, decline of direct electric heaters, efficiency with electric appliances</td>
<td></td>
</tr>
<tr>
<td>84 TWh H₂, 19 Mt CO₂ DAC</td>
<td>Heat pumps, efficient lighting</td>
<td>Heat pumps, efficient lighting</td>
<td></td>
</tr>
<tr>
<td>Gross storage use comprises pump storage and stationary battery storage in the public supply. The figure does not consider the electricity consumption of household batteries combined with PV installations. Prognos, Öko-Institut, Wuppertal Institut (2020)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H₂ = hydrogen. **PP** = power plant. **DAC** = direct air capture. **HH** = households. **ITS** = industry, trade and services. **CCS** = carbon capture and storage.
Net electricity generation and net imports

Figure 8

Other energy sources for electricity generation: blast furnace gases, waste incineration, petroleum, other sources. Storage: generation from battery storage and pump storage

Prognos (2020)
Renewable energies

Installed renewable capacity (GW)

<table>
<thead>
<tr>
<th>Year</th>
<th>Solar PV</th>
<th>Onshore wind</th>
<th>Offshore wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>52</td>
<td>117</td>
<td>45</td>
</tr>
<tr>
<td>2025</td>
<td>179</td>
<td>65</td>
<td>268</td>
</tr>
<tr>
<td>2030</td>
<td>352</td>
<td>80</td>
<td>211</td>
</tr>
<tr>
<td>2035</td>
<td>512</td>
<td>94</td>
<td>252</td>
</tr>
<tr>
<td>2040</td>
<td>562</td>
<td>119</td>
<td>315</td>
</tr>
<tr>
<td>2045</td>
<td>355</td>
<td>128</td>
<td>61</td>
</tr>
<tr>
<td>2050</td>
<td>70</td>
<td>130</td>
<td>6</td>
</tr>
</tbody>
</table>

Renewable net electricity generation (TWh)

<table>
<thead>
<tr>
<th>Year</th>
<th>Solar PV</th>
<th>Onshore wind</th>
<th>Offshore wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>91</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>2025</td>
<td>211</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>2030</td>
<td>315</td>
<td>94</td>
<td>119</td>
</tr>
<tr>
<td>2035</td>
<td>355</td>
<td>119</td>
<td>128</td>
</tr>
<tr>
<td>2040</td>
<td>61</td>
<td>130</td>
<td>70</td>
</tr>
<tr>
<td>2045</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2050</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Needed average added capacity per year

Gross increase, for life spans of 25 years

2021–2030

- **10 GW solar PV**
- **1.7 GW offshore wind**
- **4.5 GW onshore wind**

Past years with greatest added capacity:
- Solar PV: 8 GW (2010, 2012)
- Offshore wind: 2 GW (2015)

Cumulative gross increase from 2021 to 2030:
- Solar PV: 38 GW
- Offshore wind: 17 GW
- Onshore wind: 44 GW

Includes electricity generation from renewable hydrogen together with stored and imported renewable electricity. Prognos (2020)
Three pillars of the transition to climate neutrality:

Pillar 3 – Hydrogen as an energy source and raw material

Alongside electricity, hydrogen will play a very important role in creating a climate-neutral economy. Hydrogen demand in 2050 will be around 270 TWh. 31% of that will be produced in Germany. The rest will be imported.

In the industrial sector, hydrogen will mainly be used for the direct reduction of iron ore for CO₂-free steel production, for the generation of process steam and as a raw material for basic chemicals.

40 TWh of hydrogen will be used in the transport sector, primarily for freight. Trucks and articulated vehicles will use hydrogen fuel cells. Light commercial vehicles will also run on hydrogen but to a lesser extent.

Most of the hydrogen will be used to generate electricity. In times when there is residual demand, hydrogen will be used to fuel gas-fired power plants. Some of these are combined heat and power plants for district heating. For cost reasons, no hydrogen will not be used for powering on-site building heating systems.

The study’s scenario also relies on other synthetic fuels in addition to hydrogen. It uses CO₂-neutral PtL fuels for shipping and air transport and, to a much smaller extent, for road transport, where they power internal combustion vehicles that remain in use.

Green naphtha will be used for industrial materials that recycling cannot provide. The needed electricity-based fuels and green naphtha – totalling 120 TWh – will have to be imported.

In total, demand for hydrogen and other synthetic fuels and feedstocks in 2050 will amount to 432 TWh, of which 348 TWh will be imported.
The Climate Neutral 2050 scenario at a glance

Key indicators in the Climate Neutral 2050 scenario

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse gas emissions* (Mt CO₂eq)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy sector</td>
<td>305</td>
<td>98</td>
<td>45</td>
<td>-19</td>
<td>-17</td>
<td>-6</td>
</tr>
<tr>
<td>Industry</td>
<td>195</td>
<td>123</td>
<td>43</td>
<td>-30</td>
<td>-6</td>
<td>-8</td>
</tr>
<tr>
<td>Transport</td>
<td>162</td>
<td>89</td>
<td>18</td>
<td>0</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td>Buildings</td>
<td>117</td>
<td>65</td>
<td>24</td>
<td>1</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>Agriculture</td>
<td>70</td>
<td>58</td>
<td>52</td>
<td>44</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Waste / other</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>858</td>
<td>438</td>
<td>185</td>
<td>-2</td>
<td>-35</td>
<td>-22</td>
</tr>
<tr>
<td>Reduction relative to 1990</td>
<td>31</td>
<td>65</td>
<td>85</td>
<td>100</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>LULUCF (for informational purposes only)</td>
<td>-27</td>
<td>1</td>
<td>2</td>
<td>-10</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Primary energy consumption (PJ)</td>
<td>13,129</td>
<td>8,578</td>
<td>7,208</td>
<td>6,573</td>
<td>-379</td>
<td>-100</td>
</tr>
<tr>
<td>Coal</td>
<td>2,909</td>
<td>349</td>
<td>34</td>
<td>0</td>
<td>-213</td>
<td>-17</td>
</tr>
<tr>
<td>Petroleum</td>
<td>4,452</td>
<td>2,108</td>
<td>817</td>
<td>2</td>
<td>-195</td>
<td>-105</td>
</tr>
<tr>
<td>Fossil gases</td>
<td>3,099</td>
<td>2,613</td>
<td>1,354</td>
<td>3</td>
<td>-41</td>
<td>-131</td>
</tr>
<tr>
<td>Gross electricity consumption (TWh)</td>
<td>595</td>
<td>643</td>
<td>824</td>
<td>962</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Share of renewables in gross electricity consumption (%)</td>
<td>38</td>
<td>69</td>
<td>82</td>
<td>100**</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Onshore wind (GW)</td>
<td>52</td>
<td>80</td>
<td>119</td>
<td>130</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Onshore wind (GW)</td>
<td>6</td>
<td>25</td>
<td>51</td>
<td>70</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Photovoltaics (GW)</td>
<td>45</td>
<td>150</td>
<td>252</td>
<td>355</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Number of electric cars, including plug-in hybrids (millions of units)</td>
<td>0</td>
<td>14</td>
<td>32</td>
<td>30</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rail freight transport (billions of tkm)</td>
<td>135</td>
<td>190</td>
<td>210</td>
<td>230</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Number of heat pumps (millions of units)</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>14</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Useful energy demand in residential buildings (kWh/((m²·a)))</td>
<td>106</td>
<td>85</td>
<td>71</td>
<td>60</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Electrolyser capacity in Germany (GW)</td>
<td>0</td>
<td>10</td>
<td>25</td>
<td>51</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hydrogen use (TWh)</td>
<td>0</td>
<td>63</td>
<td>172</td>
<td>268</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Generation of renewable hydrogen in Germany (TWh)</td>
<td>0</td>
<td>19</td>
<td>38</td>
<td>84</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Imported hydrogen (TWh)</td>
<td>0</td>
<td>44</td>
<td>134</td>
<td>184</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Other imported synthetic fuels and feedstocks (TWh)</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>164</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Carbon capture and storage (gross volume, MT CO₂)</td>
<td>0</td>
<td>-1</td>
<td>-22</td>
<td>-73</td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>Process emissions and waste (Mt CO₂)</td>
<td>0</td>
<td>-1</td>
<td>-5</td>
<td>-18</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Negative emissions (Mt CO₂)</td>
<td>0</td>
<td>0</td>
<td>-17</td>
<td>-56</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>Negative emissions including carbon absorption (Mt CO₂)</td>
<td>0</td>
<td>0</td>
<td>-17</td>
<td>-64</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>Bioenergy CCS (BECCS, Mt CO₂)</td>
<td>0</td>
<td>0</td>
<td>-15</td>
<td>-37</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Direct air capture CCS (DACCS, Mt CO₂)</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-19</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Imported green polymers (Mt CO₂)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Population in Germany (millions)</td>
<td>83</td>
<td>83</td>
<td>81</td>
<td>79</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EU-ETS, EUR/t</td>
<td>16</td>
<td>52</td>
<td>70</td>
<td>90</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

* Negative emissions are directly factored into the sectors.
** This includes electricity generation from renewable hydrogen together with stored and imported renewable electricity.
Prognos, Öko-Institut, Wuppertal Institut (2020)
*Target for 2020: GHG reduction of 40% relative to 1990. Prognos, Öko-Institut, Wuppertal Institut (2020)
Publications by Agora Energiewende

IN GERMAN

Wie passen Mieterschutz und Klimaschutz unter einen Hut?

Wie weiter nach der EEG-Förderung?
Solaranlagen zwischen Eigenverbrauch und Volleinspeisung

Akzeptanz und lokale Teilhabe in der Energiewende
Handlungsempfehlungen für eine umfassende Akzeptanzpolitik

Zwischen Rekordhoch und Abschaffung: Die EEG-Umlage 2021 in Zeiten der Corona-Krise

Der Doppelte Booster
Vorschlag für ein zielgerichtetes 100-Milliarden-Wachstums- und Investitionsprogramm

Auszwirkungen der Corona-Krise auf die Klimabilanz Deutschlands
Eine Abschätzung der Emissionen 2020

Die Ökostromlücke, ihre Strommarkteffekte und wie die Lücke gestopft werden kann
Effekte der Windkraftkrise auf Strompreise und CO₂-Emissionen sowie Optionen, um das 65-Prozent-Erneuerbare-Ziel 2030 noch zu erreichen

Die Energiewende im Stromsektor: Stand der Dinge 2019
Rückblick auf die wesentlichen Entwicklungen sowie Ausblick auf 2020

Klimaneutrale Industrie
Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement

Charta für eine Energiewende- Industriepolitik
Ein Diskussionsvorschlag von Agora Energiewende und Roland Berger

Dialog „Energiewende und Industriepolitik“
Abschlussbericht

Flex-Efficiency
Ein Konzept zur Integration von Effizienz und Flexibilität bei industriellen Verbrauchern

Aktionsplan Lastmanagement
Endbericht einer Studie von Connect Energy Economics

Vom Wasserbett zur Badewanne
Die Auswirkungen der EU-Emissionshandelsreform 2018 auf CO₂-Preis, Kohleausstieg und den Ausbau der Erneuerbaren
#1 COVID-19 China Energy Impact Tracker
How is the pandemic reshaping China’s energy sector?

How to Raise Europe’s Climate Ambitions for 2030
Implementing a -55% Target in EU Policy Architecture

Recovering Better!
Climate Safeguards for the proposed EU’s Proposed 1.85 trillion Euro 85-Trillion-Euro Budget

EU-China Dialogue on Green Stimulus Packages
Summary of a High-Level Discussion on 23 June 2020

Dual-Benefit Stimulus for Germany
A Proposal for a Targeted 100 Billion Euro Growth and Investment Initiative

Making the Most of Offshore Wind
Re-Evaluating the Potential of Offshore Wind in the German North Sea

Supporting the Energy Transition in the Western Balkans

The German Power Market: State of Affairs in 2019
State of Affairs in 2019

The Liberalisation of Electricity Markets in Germany
History, Development and Current Status

A Word on Low Cost Renewables
The Renewables Breakthrough: How to Secure Low Cost Renewables

Building sector Efficiency: A crucial Component of the Energy Transition
Final report on a study conducted by Institut für Energie- und Umweltforschung Heidelberg (Ifeu), Fraunhofer IEE and Consentec

Climate-neutral industry (Executive Summary)
Key technologies and policy options for steel, chemicals and cement

Distribution grid planning for a successful energy transition – focus on electromobility
Conclusions of a study commissioned by Agora Verkehrswende, Agora Energiewende and Regulatory Assistance Project (RAP)

All publications are available on our website: www.agora-verkehrswende.de
How do we accomplish the clean-energy transition? Which legislation, initiatives and measures do we need to make it a success? Agora Energiewende and Agora Verkehrswende are helping Germany set the course towards a fully decarbonised energy system. As think-&-do-tanks, we work with key stakeholders to enhance the knowledge base and facilitate a convergence of views.

The Climate Neutrality Foundation was established to develop cross-sectoral strategies for a climate-friendly Germany in close cooperation with other think tanks. Based on sound research, it aims to provide information and advice - beyond individual interests.